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Abstract Notes that, in a full-scale application of the Monte Carlo method for combined heat
transfer analysis, problems usually arise from the large computing requirements. Here the
method to overcome this difficulty is the parallel execution of the Monte Carlo method in a
distributed computing environment. Addresses the problem of determination of the temperature
field formed under the assumption of radiative equilibvium in an enclosure idealizing an
mndustrial furnace. The mediuwm contained in this enclosure absorbs, emits and scatters
anisotropically thermal radiation. Discusses two topics in detail: first, the efficiency of the
parallelization of the developed code, and second, the influence of the scattering behavior of the
medium. The adopted parallelization method for the first topic is the decomposition of the
statistical sample and its subsequent distribution among the available processors. The measured
high efficiencies showed that this method is particularly suited to the target architecture of this
study, which is a dedicated network of workstations supporting the message passing paradigm.
For the second topic, the results showed that taking into account the isotropic scattering, as
opposed to neglecting the scattering, has a pronounced impact on the temperature distribution
wmside the enclosure. In contrast, the consideration of the sharply forward scattering, that is
characteristic of all the real combustion particles, leaves the predicted temperature field almost
undistinguishable from the absorbing/emitting case.

Nomenclature

E = efficiency parameter ® = azimuth angle

g = asymmetry factor i) = phase function

q = heat source w = scattering albedo
R = cumulative distribution function

S = length Subscripts

S = speed-up parameter c = conditional

T = temperature e = emission

x,9,2 = coordinates g = global

8 = extinction coefficient i = number or ray element
AV = volume L = extinction point
€ = emissivity m = marginal

0, = polar angle J) = parallel

K = absorption coefficient v = radiative

o = Stefan-Boltzmann constant S = scattering

os = scattering coefficient v = volumetric

p = reflectivity w = wall
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Introduction

Thermal radiation is an important heat transfer mode in many manufacturing,
material processing and industrial applications. In fossil fuel combustion, for
example, radiative heat exchange is a significant design parameter for
furnaces, combustion chambers and various types of flames. In the
semiconductor industry, infra-red heat sources are used in several processes,
such as the Czochralski crystal growth and chemical vapor deposition. Other
well-known applications of radiative heat transfer include high temperature
heat exchangers, solar energy collectors and radiant cooling used in electronic
packaging and air-conditioning. In all of these applications, thermal radiation is
combined with convection and conduction. The balance between these heat
transfer modes is expressed through the energy equation. The iterative solution
of this equation is a time-consuming procedure that is further impeded by the
strong non-linearity of the radiant source term.

This difficulty motivates the present work. The objective is to solve a
complete multidimensional radiative heat transfer problem, including
scattering, using the accurate but time-consuming Monte Carlo method.
Furthermore, the problem is formulated in the terms usually occurring in
engineering practice, that is, estimation of the temperature field by solving
some form of the energy equation. The problem associated with this
formulation is the large requirement in computing power. This difficulty is
overcome in the present work by applying the Monte Carlo method in a
distributed computing environment. Then, the sufficient computational
resources commonly found in these configurations are used to investigate the
influence of anisotropic scattering on the radiant heat exchange within an
idealized furnace.

Many methods, and numerous variants of these methods, have been
developed for the solution of radiative heat transfer problems. Standard
textbooks in thermal radiation (Siegel and Howell, 1992; Modest, 1993;
Brewster, 1992) distinguish between the zonal (Hottel and Sarofim, 1967), the
Monte Carlo (Siegel and Howell, 1992; Haji-Sheikh, 1988), the P-N or spherical
harmonics (Modest, 1974, 1975; Mengii¢ and Viskanta, 1985, 1986), and the S-N
or discrete ordinates (Fiveland, 1984; Truelove, 1988) methods, as main
categories. Together with these, the discrete transfer (Lockwood and Shah,
1981; Coelho and Carvalho, 1997) and the finite volume (Raithby and Chui,
1990; Raithby, 1999) methods should be mentioned, the former because of its
frequent application in combustion modeling and the latter because of its
increasing acceptance. With the exception of the P-N approximation, all the
previously mentioned methods have been applied in parallel computer
architectures. The parallelization of the (a) zonal and (b) Monte Carlo methods
has been addressed by Saltiel and Naraghi (1993) and Burns and Pryor (1989)
and Farmer and Howell (1998), respectively. The same topic has been
investigated for the discrete ordinates method by Gongalves and Coelho (1997),
for the discrete transfer method by Novo et al. (1999); Cumber and Beeri (1998)



and for the finite volume method by Liu et al. (1999); Coelho and Gongalves
(1999).

In all of these studies, the parallel solution is achieved using either spatial or
angular decomposition. A third option, the wavelength decomposition,
although the most straightforward, has not been exploited in these studies,
since they all assumed gray media. The spatial decomposition has been
examined by Gongalves and Coelho (1997); Novo ef al. (1999); Liu et al. (1999);
and Coelho and Gongalves (1999). It is the most desired method because of its
compatibility with the decomposition usually applied in computational fluid
dynamics. However, in the references cited earlier, it obtained poor
parallelization efficiencies. This seems to be in accordance with the nature of
thermal radiation as a potentially long-range acting phenomenon that may
require intensive exchange of information between the spatial subdomains.
Angular decomposition is the method that gave the best results with respect to
the parallelization and speed-up efficiencies. However, its application in
architectures with many processors is pronouncedly limited in the cases where
the adopted radiation model has a low angular resolution.

The Monte Carlo method offers another parallelization option. This is the
event or sampling parallelization, which takes advantage of the statistical
nature of the method. In Monte Carlo, the radiant exchange is simulated with a
sufficiently large amount of discrete elementary energy packets. Emission,
absorption, scattering and reflection of these packets are represented by
probability density functions, which are used to examine the history of the
energy packets. Each packet is independent of the rest of the sample and
therefore its history can be examined independently, simultaneously and thus
in parallel with the others.

The Monte Carlo algorithm is described in the next section. The emphasis is
given in presenting the innermost part of the sequential algorithm that forms
the basis for the parallel implementation. This algorithm is then applied for the
idealized furnace described by Mengti¢c and Viskanta (1985). This problem has
been referenced many times in the literature, where it has been solved using
either sequential approaches (Truelove, 1988; Coelho and Carvalho, 1997) or
parallel radiation models (Gongalves and Coelho, 1997; Novo et al, 1999,
Cumber and Beeri, 1998; Coelho and Gongalves, 1999). For this problem, new
test cases are constructed and solved. Their aim is twofold: first, to evaluate the
parallel performance of the algorithm, and second, to demonstrate how the
ample resources found in a parallel architecture can be used to solve a
demanding problem, such as the influence of anisotropic scattering. The paper
ends with a summary of the key points and the conclusions.

Formulation

Since the pioneering work of Howell and Perlmutter (1964) and Perlmutter and
Howell (1964), Monte Carlo methods have found a wide range of applications in
radiative heat transfer. A recent review of this subject is given by Howell
(1998). Detailed descriptions of the method can be found in textbooks (Siegel
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and Howell, 1992; Modest, 1993; Brewster, 1992) and monographs (Haji-Sheikh,
1988; Yang et al., 1995). In this section, the computations composing a Monte
Carlo algorithm will be presented, with the emphasis on the algorithmic branch
dealing with anisotropic scattering and the conversion from the sequential to
the parallel algorithm.

Sequential Monte Carlo algorithn

A schematic of the sequential Monte Carlo algorithm is shown in Figure 1. The
mmput data of the algorithm are the geometric and grid information, the
temperature and emissivity distributions on the boundaries, and the field
distributions of the absorption coefficient, the scattering coefficient and the
asymmetry factor. The initial step is to calculate the characteristics of the
sample that will be examined for each volume or surface element. For that
purpose, either the amount of energy packets or the energy carried by each
packet is prescribed and the remaining undefined quantity is determined after
calculating the thermal power emitted by each spatial element. Then a set of
energy packets is emitted and their propagation history within the enclosure is
recorded. This is done in the inner loop shown in Figure 1.

The inner loop is repeated as many times as it takes either to make the
maximum local standard deviation of the radiative source term fall below a
prescribed limit, or to make the number of iterations exceed a prescribed value.
The use of the standard deviation as a measure of the error introduced by the
statistical nature of the Monte Carlo method is a simple and generally
applicable approach. The disadvantage of this approach is the high
computation cost that is created by the repetition of the same simulation. More
elaborate methods for controlling the convergence of Monte Carlo methods
have been proposed by Kobiyama (1989) and Schweiger et al. (1999). These
approaches refer to iterative applications of a Monte Carlo method in a
combined heat transfer problem. They are based on the reuse of the
information generated by a previous set of energy packets that may lead to
significant savings in computer time. However, the efficient parallelization of
these approaches is a topic that demands future investigation.

The inner loop of the algorithm traces each of the emitted energy packets.
The preliminary steps to initiate this tracing are the random selections of the
emission point, the extinction optical length and the emission direction. The
first step is done by considering the probability of each emission point as
homogeneously distributed within each spatial element. For the second step, a
value between 0 and 1 is assigned to the extinction random variable R,. The use
of this variable will be discussed later. The third step, the choice of the emission
direction, is done by specifying the azimuth ¢ and the polar ¥ angles. Both
angles refer to a relative system of axes attached and carried by the energy
packet. Transformations between this relative and the absolute system are
made using a rotation matrix. The cumulative distribution functions (cdfs) for
the random selection of the polar and the azimuth angles are shown in Table L.
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After the emission direction has been chosen, a simple algorithmic procedure
defines the intersection points between this direction and the bounding
surfaces of the control volumes. In each successive intersection, the condition
whether InRs + >, s;8; > 0 is examined. In this expression, s; is the length
traveled within the currently traced control volume and g; is the corresponding
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Figure 1.

Sequential Monte Carlo
algorithm. The inner
loop remains unchanged
in the parallel version
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Table I.

Cumulative distribution
functions for direction
sampling

extinction coefficient. If this condition holds, the next intersection point is
calculated until a boundary is reached; otherwise the extinction point L is
defined such that

-1
InRs + > i + 5.0 =0 1)

=1

Extinction at point L should be interpreted either as absorption, or scattering.
This is done by comparing the value of a random variable R, with the value of
the local scattering albedo w. If absorption occurs, then the energy carried by
the packet is tallied on the corresponding accumulator and the control is
brought to the point where the decision is made whether to inject a new packet
or to stop, because the end of the sampling set has been reached. The second
option for an extinction event is scattering. This is interpreted as absorption
and simultaneous anisotropic re-emission. The cdf for the choice of the azimuth
and polar angles of the after-scattering direction is directly related to the phase
function ® (49, ) of the medium

© 0,
R, o) = /0 /0 (9, ) sin ddIdyg @)

In general, the phase function depends on both the azimuthal and polar angles
and therefore equation (2) is a joint cdf which should be decomposed into
appropriate marginal and conditional functions in order to sample the
scattering angles. The problem is significantly simplified if the phase function
has an azimuthal symmetry. In this case a marginal cdf for the azimuth angle is
directly derived from equation (2

Ry, = / / ) sin 9dddyp = % 3)

The conditional cdf for the polar angle that corresponds to equation (3) is then

Parameter Phenomenon Function
1) Emission from surface and = 27R,
volume, reflection, scattering
Emission from surface and ¥ = sin~! (VRy)
reflection
Emission from volume 9 = cos™1(1 — 2Ry)
s N2
Scattering 9 = cos™! ((1 +g%— <1+§;—1§’H§> ) /Zg)
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In the case where the scattering particles are spherical, homogeneous and
isotropic, the phase function ®(+}) can be rigorously determined by applying
the Lorenz-Mie theory of elastic scattering (Bohren and Huffman, 1983). This
approach has been followed by Marakis et al. (2001). However, the use of the
Lorenz-Mie phase function has two disadvantages; first, it increases
significantly the computational effort because of the associated lengthy
calculations, and, second, its introduction into equation (4) does not lead to a
closed form for sampling the polar angle. The latter problem has been
overcome by Marakis ef al. (2001) by creating a look-up table containing the
values of the phase function in a prescribed grid of angular positions and then
interpolating for intermediate values of the polar angle. However, this
procedure creates a significant computational overhead. In the present study,
the Henyey-Greenstein phase function is adopted:
1—g°
(V) = 5
2 (1+g2—2g00519)3/2 ©)

In equation (5), g is the asymmetry factor of the medium. This parameter is
defined as the integral of the phase function over the solid angle and thus it can
be rigorously determined using the Lorenz-Mie solution. However, in most
practical situations, the asymmetry factor is averaged over the Planck function
and a particle size distribution and therefore only mean values characteristic of
the kind of scattering particles are of interest. The Henyey-Greenstein
expression has been tested against the rigorous Lorenz-Mie phase function by
Gouesbet et al. (1983). It was found to represent satisfactorily the strong
forward scattering of combustion particles. In the context of the present study,
the main advantage of equation (5) is that it turns equation (4) into an
expression appropriate for the direct sampling of the polar angle

. 1-g
¥ = cos 1((1 +g2— <m> >/2g> (6)

With reference to Figure 1, the branch that completes the inner loop refers to
the possibility that the propagating packet reaches a boundary. This
possibility is treated conventionally by considering three options; diffuse
reflection using the cdfs of Table I, wall absorption, or exit from the
computational domain.

Parallel Monte Carlo algorithm

The concept followed for the parallelization of the Monte Carlo method is to
trace concurrently as many energy packets as the available computing nodes.
This is schematically shown in Figure 2. The building-block for the parallel
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Figure 2.

Parallel Monte Carlo
algorithm. The
communication between
the processors has been
implemented using the
message passing
interface (MPI)
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algorithm is the inner loop shown in Figure 1. This loop remains unchanged in
the parallel version. The difference here is that each sample is further
decomposed into N, subsets, where NN, is the number of the active processors.
This concept is a direct implementation of the single-program-multiple-data
paradigm. According to this programming model, the same code is executed in
each node but processes different portions of data, 1.e. traces different energy
packets. The algorithm has been implemented using the message passing
interface (MPI). A very similar implementation would have been obtained if
another message passing library had been used.

The algorithm starts by choosing one processor to be the master. This master
node performs the input task and broadcasts the geometric and field data to the
client processors. If the processors are of the same computing power, the number
of energy packets that will be examined in each node equals the sample size
divided by V,. In the case of a non-homogeneous architecture, the effectiveness of
this simple balancing scheme can be maintained by introducing a set of
weighting factors depending on the computing power per node. After completion



of the calculations for each set, information about the absorbed amount of energy
per volume or surface element that is distributed among the processors is
collected back to the master node. The algorithm then checks whether any of the
termination criteria are met and broadcasts this information to the clients.

The target architecture for the implementation of this algorithm is a
dedicated network of computers. There are a few reasons that make this
architecture suitable for the adopted parallelization method and vice versa. The
first reason is that it may require a considerable amount of memory per node,
because all the spatial information (geometry, field data and boundary
conditions) should be stored locally. This requirement is easily met in the
dedicated network architecture, since each node can be easily equipped with a
sufficient amount of memory. The second reason is that the histories of the
energy packets are by definition independent and therefore only the statistics
of a sampling set have to be transferred among the processors. This minimal
communication requirement between the nodes helps to avoid any potential
network bottleneck caused by limited network bandwidth. Furthermore, even if
the network is non-homogeneous, the load balancing is much simpler compared
with the domain decomposition method, because the only adjustable parameter
1S the size of the sample that is processed by each node.

Results

The algorithm presented in the previous section is applied to study the radiant
heat transfer in the three-dimensional furnace-like enclosure examined by
Mengtic and Viskanta (1985). The dimensions of this idealized furnace are 2 x
2 x 4m in the x, y, z directions, respectively. The temperature and the
emissivity are 1,200K and 0.85 for the bottom wall, 400K and 0.7 for the top
wall, while, for the peripheral walls, T, = 900K and ¢,, = 0.7. These data will be
kept constant for all the cases that will be examined below.

The varying parameters are summarized in Table II. The test cases shown
there can be classified in three categories. In the first category belong cases 1
and 2, where the medium only absorbs and emits. These cases serve for code
validation by comparing the Monte Carlo results with the zone calculations of

Category Case Bm™) w(-) a() Grid
Code validation 1 0.5 0.0 7x7x12
2 0.5 0.0 - 12 x 12 x 22
Influence of scattering 3 0.5 0.7 0.0 12 x 12 x 22
4 05 0.7 09 12 x 12 x 22
5 0.85 041 09 12 x 12 x 22
Parallel performance 6 0.5 0.0 - 12 x 12 x 22
7 0.5 0.0 @7x7x12

(b) 12 x 12 x 22
(© 22 x 22 x 42
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Mengii¢ and Viskanta (1985). In the second category belong cases 3-5, where
scattering is modeled. The aim of this category is to investigate the validity of
assumptions commonly adopted in engineering calculations, such as
neglecting of scattering, or consideration of isotropic, instead of anisotropic,
scattering. In the third category belong test cases 6 and 7, which are concerned
with the performance evaluation of the parallel ray-tracing method.

For convenience, all of the seven cases assume gray and spatially constant
radiative properties. These two assumptions do not influence the parallelization
efficiency of the ray-tracing algorithm. Calculations with spectrally dependent
and spatially varying properties using the serial version of this code are cited in
Marakis et al. (2000, 2001). As indicated by equation (1), the parallel ray-tracing
version runs as if the medium has spatially varying properties.

Medium in radiative equilibvium

In cases 1-5 the calculated quantities are the temperature field and the wall
fluxes. The former is estimated through an energy balance between the emitted
and the absorbed amount of energy and the heat source. That implies an
iterative procedure, according to which the temperature is updated for every
control volume as

1 . )
Tﬁew = T;le + —U (QD - Qr) (7)
In equation (7), ¢, is the volumetric heat source, taken constant and equal to
5kW/m® in all cases, and ¢, is the volumetric radiative source term calculated
by the Monte Carlo method. The iteration begins with an initial guess of the
temperature field and continues until the maximum local temperature
difference with the previous value falls below a prescribed value. This control
of the temperature convergence is the only additional item in the algorithm
shown in Figure 2. Equation (7) is highly non-linear and for that reason strong
under-relaxation is usually necessary to solve it.

The results for the absorbing and emitting medium are shown in Figure 3. In
case 1 the grid had 7 x 7 x 12 elements, same as the grid of the reference zonal
results. In case 2, the amount of volume elements was doubled for each
direction leading to an arrangement of 12 x 12 x 22 elements. In the initial and
intermediate iterations, the emitted radiant energy of each control volume was
subdivided into 10° energy packets. In the last few iterations this amount was
increased by a factor ranging from 4 to 8. This adaptation was done in order to
allow the considerably faster approach towards the converged temperature
field and then to smooth the temperature fluctuations caused by the statistical
nature of the method. As shown in Figure 3, the agreement between the zonal
results and the two Monte Carlo solutions is satisfactory. This observation
applies for both the temperature field and the wall fluxes. Furthermore, the
effect of the grid size is shown to be minor, with the exception of the volumes
which are most strongly cooled near the periphery of the top wall, where the
effect is moderate.
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The results for the isotropic scattering case 3 are shown in Figures 4 and 5. The
objective for examining this case was twofold; first, to validate the part of the
algorithm that handles scattering against the results reported by Mengii¢c and
Viskanta (1985), and second, to provide a comparison reference for the
anisotropic test cases that will follow. The results between the zone and the
Monte Carlo methods are again practically indistinguishable. Compared with
the previous non-scattering cases, the temperature levels are higher, while the
fluxes at the cold and hot walls remain practically constant. Despite these
observations, case 3 is not suitable for drawing firm conclusions about the
influence of scattering on the temperature distribution. The reason is that, in
order to compare Monte Carlo with the zonal results of Mengti¢c and Viskanta
(1985), their extinction coefficient was retained, while the scattering albedo was
increased to 0.7. This combination corresponds to x = 0.15m ™, a value that is
significantly lower than x = 0.5m !, which was adopted in cases 1 and 2. The
reduced absorption coefficient affects both the amount of energy emitted by
each volume g, = 4koT*AV, and the absorption of the radiation emitted by
the surrounding volume and surface elements. That obscures the prediction of
the balance between these two terms and the volumetric heat source from
which the temperature is derived.

Isotropic scattering is an assumption that is commonly adopted in modeling
the radiant heat exchange in coal-fired furnaces. The aim of investigating the
next two cases is to decide how realistic this assumption is. In case 4, the
extinction coefficient and the scattering albedo remain the same as in case 3.
The results are shown in Figures 4b and 5b. It can be observed in the latter
Figure that the wall fluxes are higher than the isotropic case. This is explained
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Figure 3.
Temperature (left) and
net wall flux (right)
distributions for cases 1
and 2. The reported
values correspond to

y = 1.0m. The zonal
results are due to
Mengii¢ and Viskanta
(1985)
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Figure 4.

Temperature
distributions for (a) case
3, (b) case 4, and (c) case
5. The reported values
correspond to y = 1.0m.
The zonal results are
due to Mengii¢c and
Viskanta (1985)
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Figure 5.

Net wall flux
distributions for (a) case
3, (b) case 4, and (c) case
5. The reported values
correspond to y = 1.0m.
The zonal results are
due to Mengii¢c and
Viskanta (1985)
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by the reduction of the radiant heat flux that is back-scattered towards the
interior of the enclosure. The temperature field in this case is slightly more
uniform compared with case 3. In terms of the Monte Carlo method, scattering
enhances absorption due to the increase of the length traveled by the energy
packets within a control volume. Near the hot wall, this enhanced absorption is
counterbalanced by increased emission, which is obtained by the adjustment of
the temperature at a higher level. In the vicinity of the cold wall, heat is
absorbed more effectively in the isotropic case, and therefore the medium
temperature tends to equalize the wall temperature. However, the temperature
differences between cases 3 and 4 are minor. That happens even though the
examined values of the asymmetry factor represent the two opposite extremes
in the scattering behavior of the particles, where for g = 0 any effect of
scattering is maximized and for g = 0.9 this effect is almost cancelled. This
observation questions the importance of scattering as a heat transfer
mechanism.

To clarify this issue, case 5 is examined. In this case the scattering
coefficient and the asymmetry factor remain the same as in case 4, while the
absorption coefficient is taken as x = 0.5m™, the same as in case 2. That
matches the emission thermal power for these two cases. As shown in Figures
4c and 5c, the temperature differences between case 2 and case 5 are in the same
order of magnitude as the statistical fluctuations of the Monte Carlo method. A
similar observation holds for the upper wall flux, shown in Figure 5c, while the
differences on the bottom wall, though systematic, are rather insignificant. It
can therefore be concluded that, for conditions similar to those examined in this
section, neglecting scattering is a better engineering simplification of the real
anisotropic behavior of coal combustion particles than the assumption of
isotropic scattering.

Parallel performance

The strategy adopted for the parallelization of the Monte Carlo method does not
influence the convergence of the temperature field calculated through equation
(7). That happens because the total amount of the traced energy packets per
spatial element and iteration does not depend on the number of the active
processors. For that reason, the test cases that will be examined in this section
do not refer to an iterative solution of equation (7), as in the previous section,
but instead they correspond to one global iteration which obtains the radiative
source term distribution.

Three indices are used to evaluate the parallel efficiency. The first one is the
speed-up factor defined as S, = #/t,, where t; and {, are the wall clock
execution times using 1 and p nodes, respectively. This factor is a direct
estimate of the reduction in execution time achieved by a particular parallel
algorithm. It is closely related to the second index, the global efficiency, which
is defined as £, = #1/({,p). The degradation of the global efficiency at higher
number of processors, a problem almost synonymous with parallelization, is
usually attributed to two reasons; ineffective load balancing introducing



processor latency and increased communication overhead. A direct measure of
the latter is the third index, the parallel efficiency £, = ;‘”‘, which is defined as
the ratio of the actual calculation time over the total time spent on an iteration.
In this definition, the total time #,,, is the sum of £,,;. and ¢,,,,,,, the times spent
on calculation and communication, respectively.

Case 6 was run to determine the relation between the number of processors
and the size of a subset. In this case, the overall amount of energy packets
traced for each volume or surface element is decomposed into subsets of 500,
5,000 and 50,000 packets. The decrease of the subset size means more often
calculation of the local mean radiative source term and its corresponding
standard deviation. On the one hand, this is desirable because it helps to avoid
unnecessary calculations after a certain level of confidence has been reached.
On the other hand, the frequent collection of the sampled quantities from the
distributed processors by the master processor creates a certain
communication overhead. In addition, during the calculation of the statistics
only the master processor is active. The effect of the subset size is shown in
Figures 6a to 6¢, where the speed-up factor, the global and the parallel
efficiencies are plotted for runs with one to nine processors. The aggregation of
data after tracing only 500 packets created a pronounced communication
overhead. The speed-up and the efficiencies for 5,000 packets are acceptable for
up to nine processors, while the implementation of this algorithm in a network
with more computing nodes may take advantage of a greater subset size.

Case 7 was examined to determine the influence of the grid fineness. This
parameter may affect directly the overall execution time not only because the
total sample size per iteration is proportional to the amount of volume and
surface elements, but also because the time to trace an individual packet is
longer in a finer grid. For this test case, the subset size was kept constant to
50,000 packets and three progressively finer grids were examined. The speed-
up was almost linear, as shown in Figure 7, while the global and the parallel
efficiencies were found to be higher than 99.5 per cent for all the examined
combinations of grid size and number of processors. That happens because the
communication time increases only very slightly with the grid fineness and, in
any case, with significantly lower rate than the calculation time.

Other parameters influencing the parallel performance of the Monte Carlo
algorithm are the wall reflectivity and the scattering coefficient. These
parameters were examined, but they will be only briefly reported here because
they all exhibit a tendency very similar to that observed in the previous case;
any prolongation of the average time to complete the tracing of an energy
packet has a positive impact on the parallelization efficiency. The latter, in
addition, is satisfactory in all the cases. Specifically, the parallel efficiency for
nine processors and 5,000 packets per subset was measured to range between
94.9 per cent,fora 7 x 7 x 12 grid and ¢,, = 1.0, and 99.9 per cent, for a grid of
22 x 22 x 42 elements and ¢,, = 0.3. Similarly, £, was found to be equal to 99.8
per cent, for w = 0.0, and 99.9 per cent, for w = 0.7, both cases run in nine
processors and sharing a 12 x 12 x 22 grid and 50,000 packets per subset. For
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the asymmetry factor, the expected tendency for the parallel efficiency is to
increase in media with more isotropic scattering behavior. All the cases were
run on a dedicated cluster made up of nine Pentium II (300MHz) processors. For
case 6, the actual execution times can be derived from Figure 6 and the
execution time on a single processor, which was 2,350 sec. The corresponding
single-processor times for the three grids examined in case 7 were 333, 2,350,
and 20,980 sec, respectively.

Conclusions

A Monte Carlo method was applied in the present study to calculate the radiant
heat exchange in a furnace-like enclosure. The objective was to demonstrate the
application of this method in an engineering problem that requires a significant
amount of computing power. The investigated problem was the influence of
anisotropic scattering on the temperature field corresponding to the
equilibrium between the radiative source term and a volumetric heat source.

The code was successfully validated against data available in the literature.
Then a series of new test cases was examined. It was shown that isotropic
scattering has a pronounced impact on the formation of the temperature field.
In contrast, when anisotropic scattering with realistic high value of the
asymmetry factor was considered, the results were almost undistinguishable
from the corresponding case with neglected scattering. This is an indication
that the importance of scattering as a heat transfer mechanism inside furnaces
may have been overestimated in previous studies. Therefore, for particles
characterized by high values of the asymmetry factor, the neglecting of
scattering is the suggested engineering approximation instead of the
consideration of isotropic behavior.

The adopted parallelization method was the decomposition of the sample set
to the available processors. This method can be characterized as intuitive; it is,
however, very efficient and it may take advantage of the computing power that
1s readily available in almost every laboratory. Results were presented for up to
nine processors. With the exception of very small sampling sets, the indices
used to quantify the parallel efficiency were very high for all the examined
cases. This observation indicates that an application of the parallel Monte Carlo
algorithm in a computer with an order of magnitude of more processors is
feasible.
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